
graphile.org @GraphileHQ graphile team@graphile.org

PostGraphile instantly builds a best-practices GraphQL API from your PostgreSQL database.
By converting each GraphQL query tree into a single SQL statement, PostGraphile solves server-side under-
and over-fetching and eliminates the N+1 problem, leading to an incredibly high-performance GraphQL API.

PostGraphile is open source on GitHub, try it out today.

1

GraphQL Operation Cheatsheet

A request to a GraphQL schema is called
an “operation,“ and each operation has an
“operation type“:

{
 search(phrase: "cream") {
 ... on Food {
 manufacturer
 }
 }
}

Fragments
Fragments in GraphQL are shared pieces of query logic, which
allow you to reduce repetition in your queries, or to request
fields on a subtype of a union or interface type. There are two
types of fragments: named fragments and inline fragments.

Anatomy of a named fragment
The fragment spread in the above ProfileQuery refers
to a fragment named “UserFrag“. Here's how the
“named fragment“ UserFrag might be defined:

Inline fragment
When you are querying a field which returns a union or
interface type, there are multiple concrete types the data may
end up being. An inline fragment allows you to query fields on
one concrete type from the interface or union without causing
errors if the other types do not support that field, and without
having to create a named fragment.

Anatomy of a GraphQL operation
All operations use the same syntax. Here's an example
of a GraphQL query with the various parts labelled:

The operation type (”query“) is required for mutation and
subscription operations, but for a query with no operation
name and no variables it is optional.

The operation name is always optional, it is generally used for
referring to queries conveniently, logging and debugging.

The variable definitions (including brackets) should only be
included if there are variables; each variable starts with a dollar
symbol ($) and must declare its type.

Each operation must have a selection set.

Each selection set must contain at least one field or fragment
spread. Some fields can accept arguments. All fields (except
scalar (leaf) fields) require a selection set. Operations must also
include the definitions of any fragments they use (and only
fragments that are used).

A named fragment is composed of the “fragment“ keyword,
a name, a “type condition” and a selection set. The type
condition tells the system which types the fragment can be
used on. The selection set, like elsewhere, can include fields,
nested selection sets, arguments, aliases and additional
fragment spreads; however a fragment spread may not create
a cycle.

query — read and traverse data
mutation — modify data or trigger an action
subscription — run a query when an event occurs

graphile.org @GraphileHQ graphile team@graphile.org

PostGraphile instantly builds a best-practices GraphQL API from your PostgreSQL database.
By converting each GraphQL query tree into a single SQL statement, PostGraphile solves server-side under-
and over-fetching and eliminates the N+1 problem, leading to an incredibly high-performance GraphQL API.

PostGraphile is open source on GitHub, try it out today.

2

PostGraphile

GraphQL Operation Cheatsheet
Continued...

Mutations
The syntax for mutations is the same as for queries, but the
root fields are expected to perform a data mutation or action
of some kind. For this reason, GraphQL mutation root fields
run in series rather than parallel. Only the root fields in a
mutation request perform mutations, nested fields are used
to query the result of the mutation (if there is one).

mutation TagPost($id: ID!, $tag: String!) {
 addTagToPost (postId: $id, tag: $tag) {
 post {
 id
 tags
 }
 }
}

subscription NotificationSubscription {
 notificationReceived {
 eventTimestamp
 notification {
 id
 text
 }
 }
}

Subscriptions
Some GraphQL servers support real-time functionality thanks
to a feature called “subscriptions.“ These subscriptions tell the
server that whenever a particular event occurs (for example a
new post is added, or someone likes your status), the server
should execute the given query and send the result to the user.

Unlike queries and mutations, subscriptions only have one
root-level field, and can send the client zero or more payloads
conforming to the selection set. Subscriptions are generally
long-running requests; they can be executed over a wide array
of transports but they typically involve websockets.

Introspection
GraphQL has a powerful introspection system built in for
finding out all about your GraphQL schema — this is how
GraphiQL populates the documentation browser and auto-
complete. Advanced tooling in many editors can use this to
give instant feedback of the validity of your GraphQL queries.
The introspection system in GraphQL uses and reserves names
that begin with two underscores, such as ‘__typename’. Try
exploring the ‘__schema’ root query field in GraphiQL .

GraphQL over HTTP
It’s very common to expose a GraphQL schema over HTTP.
When doing so, the main inputs are the query string (the
GraphQL request document, could be a query or a mutation),
and the variables. If the request document contains multiple
operations, then the operationName of the operation to
execute should also be specified.

The response from a successful GraphQL HTTP request will
typically be a JSON object with the result “data“ and any
“errors“ that occurred.

window.fetch("/graphql", {
 method: "POST",
 headers: {
 "Content-Type": "application/json",
 "Accept": "application/json"
 },
 body: JSON.stringify({
 query,
 variables,
 operationName
 })
})

Normally you’d use a specialised GraphQL client to
communicate with a GraphQL server, these clients can lead
to a great developer experience. GraphiQL (pronounced like
“graphical“) is most people’s first GraphQL client, and it’s
a great way to explore a GraphQL API. There are GraphQL
clients available for most major programming languages; in
JavaScript the big two are Apollo Client and Facebook’s Relay.

